# Solution of the second second

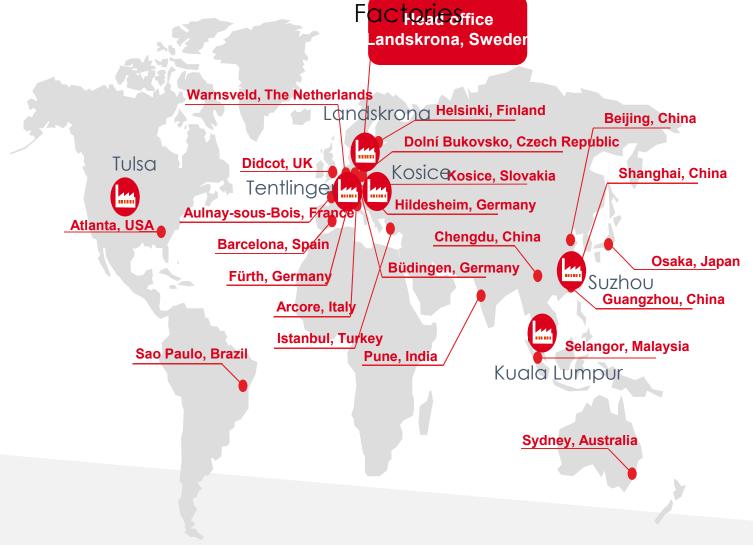
#### SWEP Brazed Plate Heat Exchanger



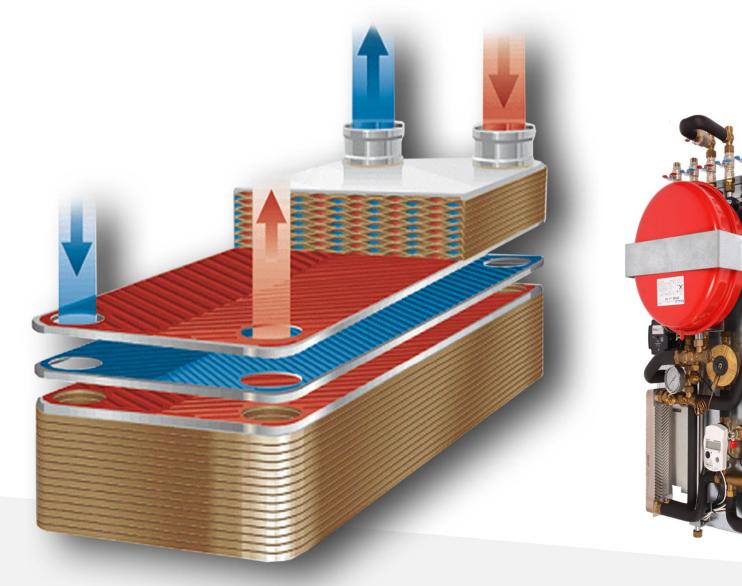
#### Taking on the global energy challenge

- Specialized in Brazed Plate Heat Exchangers (BP
- Founded in 1983
- World-leading manufactuli
- Pioneers in BPHE techn








#### Global presence meets local demand



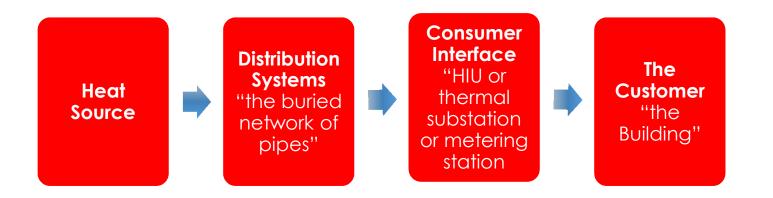


#### How a BPHE works





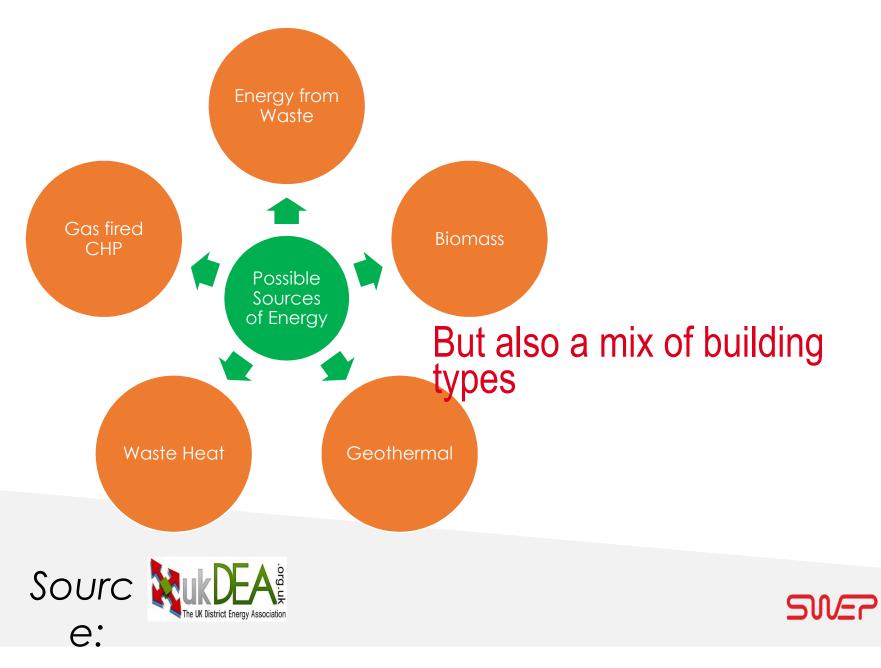
HALLENGE FEFICIENCY


#### The importance of a large range



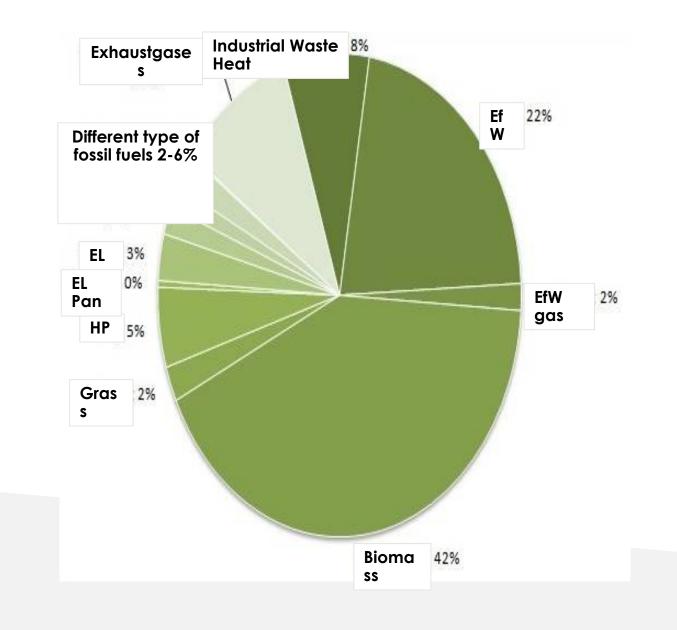


4.69 x 20.72 in


#### Key Components







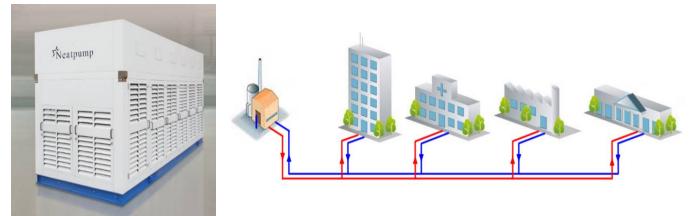

#### District Energy ....it's Technology Agnostic



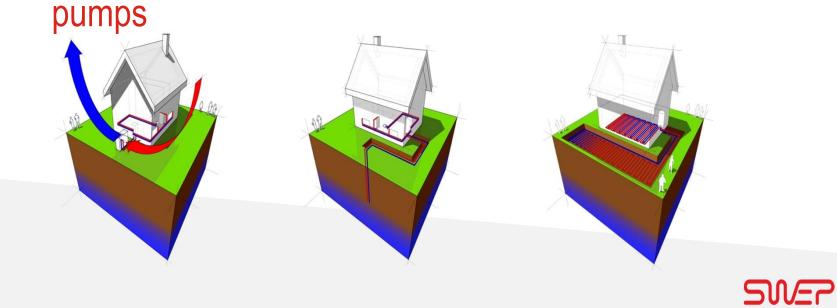
CHALLENGE FEFICIENCY

#### Heat – Where does it come from?



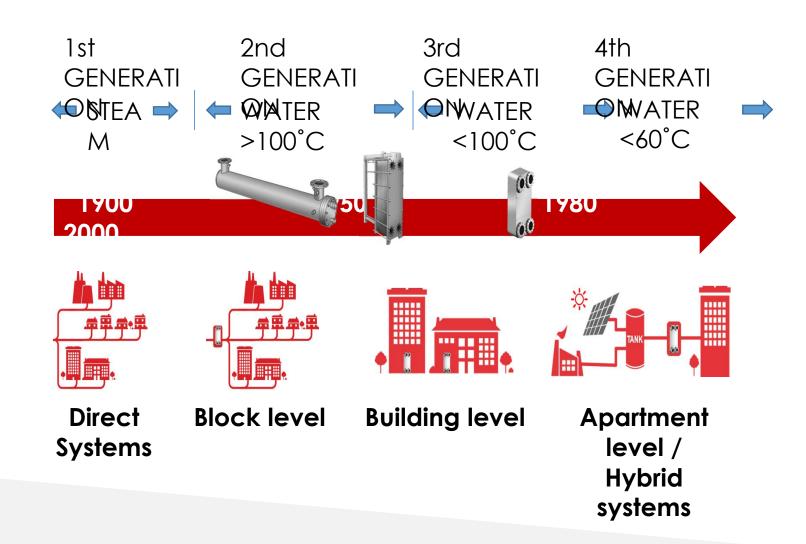



#### Waste Heat


VÄRMEVÄRDEN - INDUSTRIAL WASTE HEAT (STORA ENSO GRUMS, SWE)



#### Heat Pump in District Heating.....

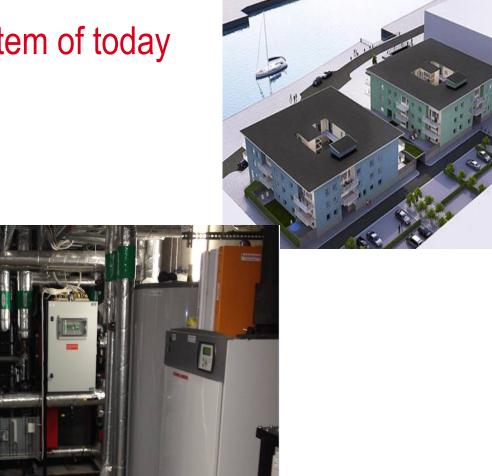



.....and not to be mixed with residential heat





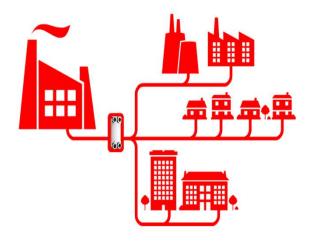
#### **Evolution of Energy Transfer Stations**






#### **BPHE** Application in District Heating

CHALLENGE FEFICIENCY







#### Energy system of today



# Design - the value of standardisation

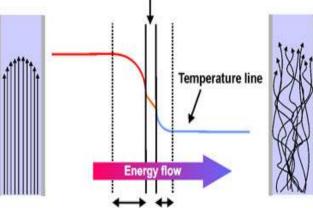






#### Energy balance

 $\dot{\mathbf{Q}} = \mathbf{U} \cdot \mathbf{A} \cdot \mathbf{L}$ 

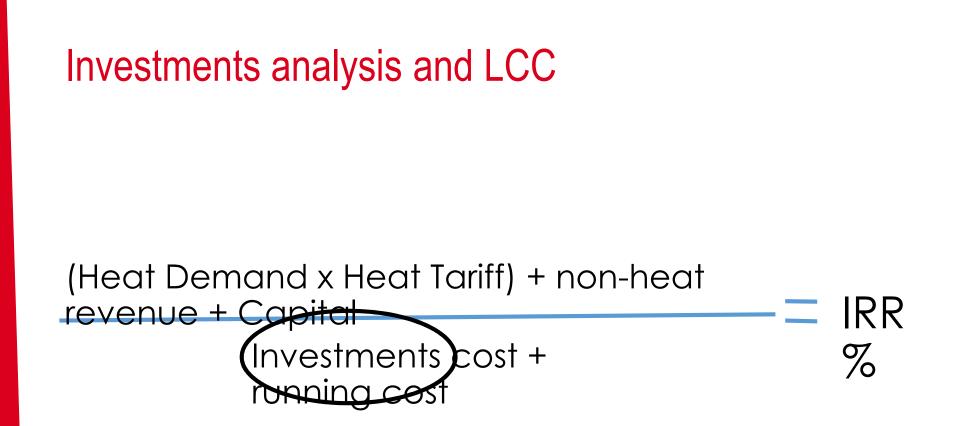

The energy content of a fluid

$$\mathbf{Q}_{\mathsf{Fluid}} = \mathbf{m} \cdot \mathbf{c}_{\mathsf{P}} \cdot \mathbf{dT}$$



#### Turbulence vs. pressure drop

- The resistant in the plate channel  $\rightarrow$  pressure drop
- Pressure drop in the plate channels is good
- Turbulent flow
  - increases the heat transfer coefficient
  - reduces the risk of fouling




**Film thickness** 











#### Oversized – What actually happens?

| DUTY REQUIREMENTS<br>Heat load<br>Inlet temperature<br>Outlet temperature<br>Flow rate<br>Max. pressure drop<br>Thermal length | kW<br>℃<br>℃<br>kg/s<br>kPa | <b>Side 1</b><br>105,00<br>75,00<br>15,85<br>50,0<br>5,160 | 2000  | List Price £<br>4.347 |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------|-------|-----------------------|
| PLATE HEAT EXCHANGER<br>Total heat transfer area                                                                               | m²                          | Side 1                                                     | 57,7  |                       |
| DUTY REQUIREMENTS                                                                                                              |                             | Side 1                                                     |       |                       |
| Heat load                                                                                                                      | kW                          |                                                            | 450,0 |                       |
| Inlet temperature                                                                                                              | °C                          | 105,00                                                     |       |                       |
| Outlet temperature                                                                                                             | °C                          | 75,00                                                      |       |                       |
| Flow rate                                                                                                                      | kg/s                        | 3,565                                                      |       |                       |
| Max. pressure drop                                                                                                             | kPa                         | 50,0                                                       |       |                       |
| Thermal length                                                                                                                 |                             | 5,160                                                      |       |                       |
|                                                                                                                                |                             |                                                            |       | List Price £<br>540   |
| PLATE HEAT EXCHANGER                                                                                                           | _                           | Side 1                                                     |       | 040                   |
| Total heat transfer area                                                                                                       | m²                          |                                                            | 8,28  |                       |
|                                                                                                                                |                             |                                                            |       |                       |

#### Oversized – What actually happens?

| DUTY REQUIREMENTS<br>Heat load                   | Side 1<br>kW         |
|--------------------------------------------------|----------------------|
| Inlet temperature                                | °C <del>105,80</del> |
| Outlet temperature                               | °C (98,27)           |
| Flow rate                                        | kg/s 15,85           |
| Max. pressure drop                               | kPa 50,0             |
| Thermal length                                   | 0,400                |
| PLATE HEAT EXCHANGER<br>Total heat transfer area | Side 1               |
| Total licat transiel alea                        |                      |



450,0

57,7



#### **Diversity curves**

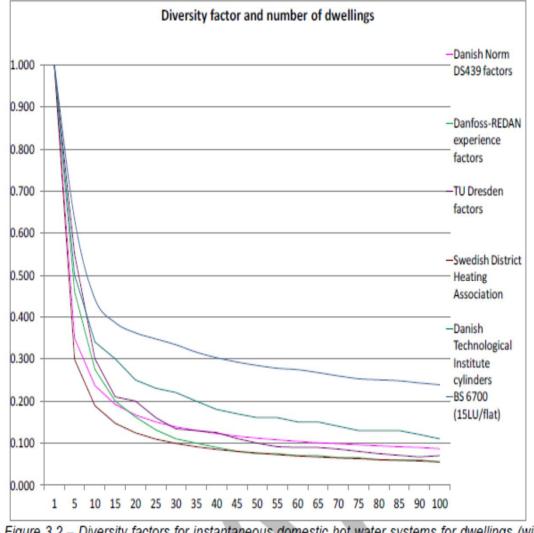
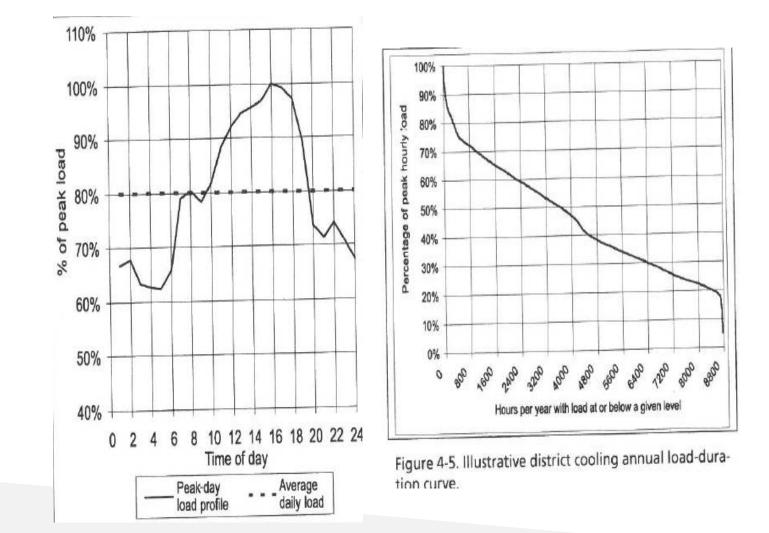
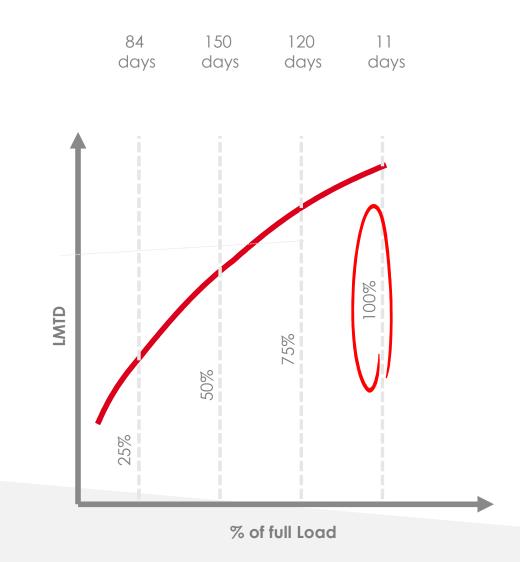
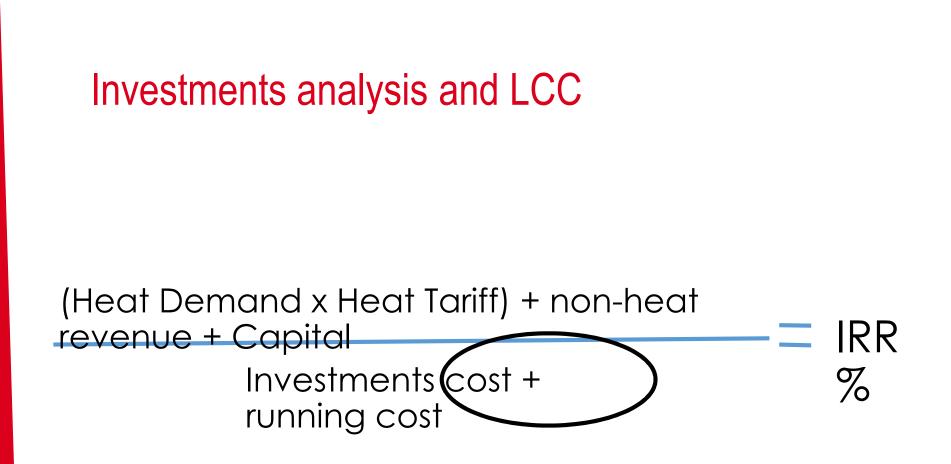




Figure 3.2 – Diversity factors for instantaneous domestic hot water systems for dwellings (with acknowledgement to SAV Ltd)




#### Load profile vs nominal conditions vary a great deal






## ESEER (European seasonal energy efficiency ratio) calculation - what is realistic?









#### Parameters to consider

|   | PROJECT TITLE                                   | LCC Plate H | eat Exchanger      |            |                                                                      |                      |                                                      |
|---|-------------------------------------------------|-------------|--------------------|------------|----------------------------------------------------------------------|----------------------|------------------------------------------------------|
|   | REFERENCE                                       |             |                    |            |                                                                      |                      |                                                      |
|   | DATE OF ANALYSIS                                | 03-jul-15   |                    |            |                                                                      |                      |                                                      |
|   |                                                 |             |                    |            |                                                                      |                      |                                                      |
|   | DISCOUNT RATE USED<br>FOR ANALYSIS              | 3           | STUDY PERIOD       | 15         | It is usual to enter the c<br>period in years, but oth<br>consistent | -                    | -                                                    |
|   |                                                 |             |                    |            |                                                                      |                      |                                                      |
|   |                                                 |             |                    |            | GPHE                                                                 | BPHE                 | Eth Glycol 30%, 12 - 6 C<br>Eth Glycol 30%, 10 - 4 C |
|   |                                                 |             | Study period (if c | different) | 15                                                                   | 15                   | Normal techical life time                            |
|   | Construction NPV                                |             |                    |            | € 10 395,15                                                          | € 12 669,90          | Real quotations                                      |
| Í | Maintenance NPV                                 |             |                    |            | € 8 595,86                                                           | € 0,00               | Regasketting every 5th year                          |
|   | Operation NPV                                   |             |                    |            | € 0,00                                                               | € 0,00               | Heat looses in the units                             |
|   | Occupation NPV                                  |             |                    |            | € 0,00                                                               | € 0,00               |                                                      |
|   | End of Life NPV                                 |             |                    |            | <del>C 385,12</del>                                                  | <del>€ 179,7</del> 2 | Decommissioning cost                                 |
|   | TOTAL LIFE CYCLE                                | COST        |                    |            | € 19 376,12                                                          | € 12 849,62          |                                                      |
|   | EQUIVALENT ANNU                                 | JAL COST    |                    |            | € 1 <del>623,07</del>                                                | €1076,37             |                                                      |
|   | NET SAVING<br>SAVINGS-TO-INVESTMENT RATIO (SIR) |             |                    | € 6 52     |                                                                      |                      |                                                      |
|   |                                                 |             |                    | 4,15       |                                                                      |                      |                                                      |
|   |                                                 |             | Alter              | rnative    | e 1 has lowest L                                                     | _ife cycle cost      |                                                      |



## Nya Karolinska Sjukhuset, Stockholm (hospital building)

- Started in 2010
- First phases equipped with Gasketed Plate Heat Exchangers (PHEs)
- Change to BPHEs: Operational dependability and low life cycle costs
- 150 SWEP BPHEs supplied in phase 4 & 5







## Low Return Temperature: perpetual debate with British consultants

| DUTY REQUIREMENTS  |      | Side 1 |       | Side 2 |
|--------------------|------|--------|-------|--------|
| Heat load          | kW   |        | 500,0 |        |
| Inlet temperature  | °C   | 75,00  |       | 20,00  |
| Outlet temperature | °C   | 60,00  |       | 60,00  |
| Flow rate          | kg/s | 7,956  |       | 2,991  |
| Max. pressure drop | kPa  | 50,0   |       | 50,0   |
| Thermal length     |      | 0,588  |       | 1,569  |
| DUTY REQUIREMENTS  |      | Side 1 |       | Side 2 |
| Heat load          | kW   |        | 500,0 |        |
| Inlet temperature  | °C   | 75,00  |       | 20,00  |
| Outlet temperature | °C   | 40,00  |       | 60,00  |
| Flow rate          | kg/s | 3,414  |       | 2,991  |
| Max. pressure drop | kPa  | 50,0   |       | 50,0   |
| Thermal length     |      | 2,014  |       | 2,301  |
| DUTY REQUIREMENTS  |      | Side 1 |       | Side 2 |
| Heat load          | kW   |        | 500,0 |        |
| Inlet temperature  | C°   | 75,00  |       | 20,00  |
| Outlet temperature | C°   | 22,00  |       | 60,00  |
| Flow rate          | kg/s | 2,257  |       | 2,991  |
| Max. pressure drop | kPa  | 50,0   |       | 50,0   |
| Thermal length     |      | 8,215  |       | 6,200  |









#### Heat losses: perpetual debate with British consultants

- Ground/Ambient Temperature 10DegC
- Conductivity 1.5W/mK


Cover - 600mm

| Flow | Return  | Differential | Series-1 | Series-2 | Series-3 | Series-4 | Unit |
|------|---------|--------------|----------|----------|----------|----------|------|
| 95   | 75      | 20           | 352.8    | 295.8    | 257.5    | 226.9    | W/mK |
| 75   | 45      | 30           | 235.2    | 197.2    | 171.7    | 151.3    | W/mK |
|      | Reducti | on in Losses | 117.6    | 98.6     | 85.8     | 75.6     | W/mK |





#### A substation – Parallel System



#### System description

By using separate heat exchangers for the space heating and the hot tap water systems, the primary heat carrier is cooled in only one stage per system . A district heating substations with this arrangement is categorized as a one-stage configuration or more commonly a parallel configuration. The SWEP concept corresponds to the parallel configuration due to its simplicity and robustness. This layout is simpler that the two-stage layout.





#### A substation – 2 Stage System



#### System description

The primary return flow from the radiator heat exchanger is mixed with primary flow from the so-called after-heater. The mixed flow then enters a third heat exchanger, the preheater. The main purpose of the preheater is to preheat the cold water before it enters the after-heater. This utilizes some heat from the radiator system and **cools the primary** *heat carrier before it returns to the production plant*. The after-heater and the preheater are often in one heat exchanger known as a two-stage heat exchanger.



#### **Space Heating**

Temperature levels for secondary space heating systems

| Heating system                                                                                                    | District heating<br>system supply<br>temperature<br>High- / low-temp.<br>system | District heating<br>system return<br>temperature | Space heating system<br>supply temperature | Space heating<br>system return<br>temperature |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------|-----------------------------------------------|
| Space heating systems in<br>new buildings                                                                         | 100/75°C                                                                        | <22 ℃<br><48 ℃<br><43 ℃                          | 40 °C<br>60 °C<br>60 °C                    | 20℃<br>45℃<br>40℃                             |
| Ventilation systems in new<br>buildings                                                                           | 100/75 °C                                                                       | <33 ℃                                            | 60 °C                                      | 30 °C                                         |
| Space heating systems in<br>older buildings built in<br>accordance with 1975 Build-<br>ing Regulations or earlier | 100 °C                                                                          | <63 °C                                           | 80 °C                                      | 60 °C                                         |

Table 4. Temperature levels for secondary space heating systems.

| Circuit                                               | Flow temperature | Return temperature |
|-------------------------------------------------------|------------------|--------------------|
|                                                       | °Č               | °C                 |
| Radiators                                             | max 70           | max 40             |
| Fan-coil Units                                        | max 60           | max 40             |
| Air Handling Unit                                     | max 70           | max 40             |
| Underfloor heating                                    | See Note         | See Note           |
| Domestic DHWS instantaneous heat<br>exchanger on load | min 65           | max 25             |
| Domestic DHWS cylinder with coil heat<br>up from cold | min 70           | max 45             |
| DHWS calorifier with external plate heat exchanger    | min 70           | max 25             |

Table 3.1 - Preferred operating temperatures for new building services systems

Note: underfloor heating systems will typically operate with floor temperatures below 35°C and typically flow temperatures of 45°C which is advantageous for heat networks as this will result in low return temperatures

SNEP



## TELE2 Arena





#### Delivery through a standard door (90 cm) in one hour

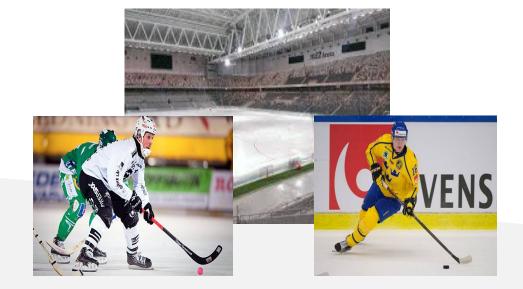


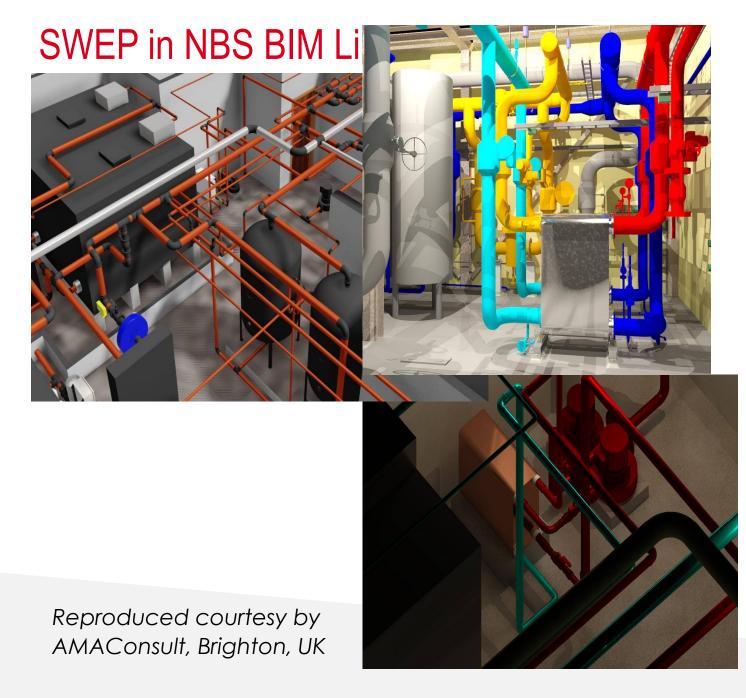




## Eight units: positioned with a hand truck in one hour






#### A quick change from green grass to hard ice











#### Thank You!



### For more information, please contact:

Christer Frennfelt MSc Mech Eng, CEng MCIBSE christer.frennfelt@swep.net +46 (0)768 908115

